Management of pneumonia – more than just antibiotics?

Wei Shen Lim Consultant Respiratory Physician & Honorary Professor of Medicine Nottingham University Hospitals NHS Trust weishen.lim@nuh.nhs.uk

Clinical case

46 year old man Unwell a few days only. Fever, cough, green sputum. Very tried. Loss of appetite.

Hypertension. Fit and well. Work: fibre glass factory

Hb 120 WCC 12 Platelets 628 CRP 95

Urea 4.0 Creat 63

Question 1

Which other diagnostic test would you do?

- A. ANCA
- B. CT thorax
- C. D-dimer
- D. HIV test
- E. Ultrasound of the chest

Question 2

What treatment would you offer?

- A. Antibiotics
- B. Antibiotics + corticosteroid
- C. Antibiotics + antiviral

Question 3

What would you do at discharge from hospital?

- A. Advise GP follow up (FU) within 2 weeks
- B. Organise CXR in 4 weeks
- C. Organise chest physiotherapy weekly x 4 wks
- D. Provide rescue antibiotics to take if cough persists > 4 weeks
- E. Organise hospital clinic FU in 4 6 weeks

ED diagnosis of CAP

3-centre US study

800 adults with ED diagnosis of CAP 219 (27%) non-pneumonia diagnosis at discharge

- non-CAP lung disease (asthma, COPD etc.)
- renal disease
- other infections
- cardiovascular disorders

18% of 581 with final diagnosis of CAP \rightarrow normal CXR

4 hour target in CAP: Speed vs Misdiagnosis

Before-after observational study: US (n=518)

 \uparrow antibiotics <4 h (65.8% v 53.8%; p = 0.007)

 \uparrow diagnosis CAP without CXR abn (29% v 21%; p = 0.04)

↓ in final diagnosis of CAP (58.9% v 75.9%; p < 0.001)

No significant differences in mortality.

CT in suspected CAP: elderly

- Cohort study, n=200 aged >65 yrs.
- Admitted and treated for CAP. CT within 72 hr.
- Clinicians graded their diagnostic certainty for each patient.

	Before	After CT
High prob of CAP	56.5%	57%
Intermediate	35%	14.5%
Low	8.5%	28.5%

Antibiotic therapy withdrawn in 8.5%

Infection? Pathogen?

Α

Β

С

F

Making a diagnosis

lung adenocarcinoma

pneumococcal

cryptogenic organising pneumonia

legionella

mycoplasma

pneumococcal in myeloma

Pneumonia 'lookalikes'

- Fluid Pulmonary oedema
- Blood Pulmonary haemorrhage
- Cancer Bronchoalveolar cell carcinoma
- Eosinophils Eosinophilic pneumonia

Cryptogenic organising pneumonia (COP)

Pneumonia - Review. Consider mimics. Pathogen ? ? Treat

Middle East Respiratory Syndrome (MERS) in the UK

- 80+ year old man with underlying chronic medical conditions.
- 16 August 2018, while symptomatic: Kingdom of Saudi Arabia
 → Manchester → Leeds.
- Hospitalised in Leeds received treatment while in isolation.
- Transferred to specialist ID facility in Liverpool.
- No history of contact with sick patients in the KSA
- Had history of direct contact with camels

5th case detected in the UK. Previous cases 2012- 13.

MERS-CoV cases since 2012

South Korean MERS outbreak 2015

- 1 imported case \rightarrow 186 cases, 38 deaths •
- 44% of cases: nosocomial infection

Patient from Hospital C attends Hospital H \rightarrow superspreading event

Oh, Korean J Int Med 2018 Chu, Lancet 2016

HIV and bacterial pneumonia

- most frequent infection in HIV-infected patients
- most common admission diagnosis
- 10-fold increase bacterial pneumonia

Additional risks

- Intravenous drugs
- Smoking: 2 to 5-fold increase risk
- Previous pneumonia
- 80% of cases: CD4 < 400 cells/mm³

Pneumonia - Review. Consider mimics. Pathogen - Vigilance: outbreaks/host. Treat ?

Penicillin

Discovery First patient

1928 1941

Oxford

Cortisone

1930 1948

Mayo

Mould fermentation (1939)

cattle adrenals (1942)

Treatment of pneumococcal infection

Pneumococcal bacteraemia – all age-groups (US)

Watson, CID 1993

CARING FOR THE CRITICALLY ILL PATIENT

Effect of Treatment With Low Doses of Hydrocortisone and Fludrocortisone on Mortality in Patients With Septic Shock

French ICUs Hydrocortisone 50 mg 6H x 7 days Fludrocortisone 50 ug od x 7 days

HR 0.7 (0.53 – 0.97)

Annane, JAMA 2002

ORIGINAL ARTICLE

Hydrocortisone Therapy for Patients with Septic Shock

Charles L. Sprung, M.D., Djillali Annane, M.D., Ph.D., Didier Keh, M.D., Rui Moreno, M.D., Ph.D., Mervyn Singer, M.D., F.R.C.P., Klaus Freivogel, Ph.D., Yoram G. Weiss, M.D., Julie Benbenishty, R.N., Armin Kalenka, M.D., Helmuth Forst, M.D., Ph.D., Pierre-Francois Laterre, M.D., Konrad Reinhart, M.D., <u>et al.</u>, for the CORTICUS Study Group*

Adjunctive Glucocorticoids in Septic Shock

ADRENAL Trial: Australian - NZ ICU network 2013 – 2017, n= 3800

Hydrocortisone plus Fludrocortisone in Septic Shock (APROCCHSS)

French ICUs, n=1241 2008 – 2015 (APC arms discontinued) Hydrocortisone 50mg IV 6 hourly, plus fludrocortisone 50µg NG x 7 days

Corticosteroids for sepsis

Meta-analysis: 42 trials, n=10 194 participants

Favours cortio	costeroids	<	No important difference	Favours	no corticosteroids
	r-		— Events per 1000 people —		Evidence quality
Mortality	236		18 fewer	254	★ 🛨 👘 Low
Neuromuscular weakness	303		53 fewer	250	\star 📩 Low
Quality of Life			Unknown		None
Stroke	10		No important difference	5	★ 🛸 Very low
Myocardial infarction	27		No important difference	30	★ 🔹 🐇 Very Low

Corticosteroids in CAP

Hydrocortisone 200 mg bolus, then infusion over 7 d Primary outcome: Improvement in FiO2/PaO2

Trial stopped after n=46

Cochrane Review: Steroids in CAP (Dec 2017)

Anticipated absolute	e effects* (95% CI)	Relative effect (95% CI)	№ of participants (studies)	
Risk with control	Risk with corticos- teroids			
Study population	All adults	RR 0.66	1863	
82 per 1000	53 per 1000 (38 to 74)	(0.47 to 0.92)	(11 HCIS)	
Study population	Severe CAP	RR 0.58	995	
131 per 1000	76 per 1000 (52 to 110)	(0.40 to 0.84)	(9 HC1s)	
Study population	Non-severe CAP	RR 0.95	868	
29 per 1000	28 per 1000 (13 to 58)	(0.45 to 2.00)	(4 RCTs) Stern, 2017	

Cochrane Review: Steroids in CAP (Dec 2017)

Effect of allocation concealment

Cochrane review (2015): Steroids in PCP

n=489 (6 studies). 1-month mortality 13% vs 24% RR 0.56 (0.32 to 0.98)

Treatmen		ient	Cont	lo		Risk Ratio	Risk F	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rando	m, 95% Cl	
Bozzette 1990	13	123	28	128	28.1%	0.48 [0.26, 0.89]			
Clement 1989	9	19	9	22	25.7%	1.16 [0.58, 2.31]			
Gagnon 1990	- 3	12	9	11	17.6%	0.31 [0.11, 0.85]			
Montaner 1990	1	18	0	19	3.0%	3.16 [0.14, 72.84]			÷
Nielsen 1992	2	30	9	29	11.1%	0.21 [0.05, 0.91]			
Walmsley 1995	4	40	6	38	14.6%	0.63 [0.19, 2.07]		-	
Total (95% CI)		242		247	100.0%	0.56 [0.32, 0.98]	+		
Total events	32		61						
Heterogeneity: Tau ² =	= 0.19; Ch	i² = 8.8	3, df = 5 (P = 0.1	2); 1= 43	%	adar de l	t	
Test for overall effect	Z= 2.03	(P = 0.0)	(4)				Eavours treatment	Favours control	200
							avoura nearingin	around control	

Bozzette:

Prednisone 40 mg PO bd Days 1 – 5, Prednisone 40 mg PO od Days 6 – 10 Prednisone 20 mg PO od Days 11 - 21

Cochrane review (2015): Steroids in PCP

Mechanical ventilation (3 studies): 6.2% vs 16.4% RR 0.38 (0.2 to 0.73)

Systematic review: corticosteroids in influenza

No trials. Important concerns – indication bias.

Steroids in pneumonia – summary

- Severe CAP mortality benefit?? **3 more trials**
- Non-severe CAP no mortality benefit
- PCP mortality benefit. 21 days steroids
- Influenza harm? No RCTs.

NICE Pneumonia Guideline Dec 2014

<u>Do not routinely offer a glucocorticosteroid to patients with</u> community-acquired pneumonia unless they have other conditions for which glucocorticosteroid treatment is indicated.

Sepsis Clinical Practice Guideline (BMJ 2018)

Weak recommendation for corticosteroids; both steroids and no steroids are reasonable options.

Typical patient in trials:

- Critically ill (32% mortality)
- Pulmonary infections (44%)
- Most septic shock (refractory to fluids/vasopressors)

Antivirals: current status

Clinical Trials (less bias)

Healthy community patients Seasonal flu

Symptom benefit (1 day) Complications? Hospitalisations? Mortality? **Cohort studies (more bias)**

Hospitalised patients Pandemic flu

Mortality benefit (20 – 30%?) Pneumonia?

Antivirals: Cochrane systematic review Jefferson T et al April 2014

- Time to first symptom alleviation reduced by 16.8 h (95% CI 8.4 to 25.1 h, p < 0.0001), or 7 to 6.3 days.
- Hospitalisations (1.4% v 1.8%) No significant effect
- Harms

nausea (11% v 6%, Risk Ratio 1.57, 95% CI 1.14 to 2.15) vomiting (9% v 3%, RR 2.43, 95%CI 1.75 to 3.38)

PRIDE dataset: IPD meta-analysis: cohort study, H1N1 Pandemic, global

NAIs associated with Mortality reduction – aOR (95% CI; p value)

- all ages (Treat any time vs none) 0.81 (0.70 to 0.93; p=0.002)
- Influenza confirmed
 A) Adults
 B) Adults in critical care
 0.82 (0.70 to 0.95; p=0.010)
 0.75 (0.64 to 0.87; p<0.001)
 0.72 (0.56 to 0.94; p=0.016)

Protecting and improving the nation's health

PHE guidance on use of antiviral agents for the treatment and prophylaxis of influenza (2014-15) Version 5.1, January 2015

- All patients with complicated influenza should receive treatment, usually in hospital.
- Treatment should be started as early as possible but should always be given, <u>no matter how long after onset of illness</u>.
 Do not wait for laboratory confirmation.

PHE Definition of Complicated influenza: Influenza requiring hospital admission and/or with symptoms and signs of lower respiratory tract infection (hypoxaemia, dyspnoea, lung infiltrate), central nervous system involvement and/or a significant exacerbation of an underlying medical condition

Physicians' attitudes to antiviral use

How often do you prescribe neuraminidase inhibitors empirically?

Bradbury, BMC Health Services 2018

British Thoracic Society CAP Care Bundle

COST

- CXR < 4 hours
- O₂ assessment < 1 hour
- Severity assessment (CURB65 score)
- Timely & targeted antibiotics < 4 hours

?corticosteroids - ?antivirals

Barbara 74: 6 weeks after discharge. "I'm now nearly back to normal, but I still "hit the wall" I lose colour and get very tired my husband tells me to stop and sit down"

Caren 31: 3 weeks after discharge,

"I'm a strong swimmer but the first time I swam after coming home from hospital I only managed 5 lengths and I was gasping for breath just trying to fill my lungs."

> CAP Qualitative study (manuscript in preparation) Pneumonia Trust website

Healthcare contact post-discharge

- 3 hospitals East Midlands, n=126.
- Working age adults. Mean age 50 yrs. 89% CURB65 0 1.
- Re-consultation 6 weeks n=71 (66%), 90% with GP
- Of 64 pts seen by GP, 37% received antibiotics.
- Readmission n=5 (4.5%) (3 had seen GP).

Time after	hospital	Frequency of healthcare re-consultation visits				
discharge		GP*	Emergency care service			
Week 1		20 (33.9)	4 (30.8)			
Week 2		21 (35.6)	6 (46.2)			
Week 3		4 (6.8)	2 (15.4)			
Week 4		12 (20.3)	1 (7.7)			
≥Week 5		2 (3.4)	0 (0.0)			

Search on Google: Pneumonia Trust

Recovering From Pneumonia

The time taken to recover from pneumonia will vary on an individual basis, depending on the severity of the illness, presence of chronic health problems and age.

The following time intervals could be expected as a rough guide:

- 1 week- resolution of fever
- · 6 weeks- improvement in cough and breathlessness
- 3 months- resolution of most symptoms although tiredness may persist
- 6 months- return back to normal

Next; The Pneumonia Diaries

Nottingham University Hospitals NHS

f 🍠

CXR 2 – 3 months post-pneumonia

	Cohort	Abnormality	Cancer
US (n=618)	Outpatients	3.7%	1.5%
Canada (n=3398)	Hospital 50%		1.1%
NZ (n=302)	Hospital		2%
US (n=40,744)	Hosp, >65yr		2.4%*

*9.2% had cancer in 5 yr period, median time 297 days.

Factors associated with cancer: chronic pulmonary disease, any prior malignancy, smoking

Cumulative incidence of heart failure post-pneumonia: Canadian cohort over 10 years

Incident heart failure 12% vs 7% Adjusted hazard ratio 1.61, 95% CI 1.44 to 1.81

Eurich, BMJ 2017

Systematic review of Smoking and CAP

Current smokers are 2x more likely to have CAP (OR 2.16; 95% CI 1.80-2.58; 18 studies)

Summary

- Recognise uncertainty \rightarrow Review diagnosis
- Travel history, HIV
- Consider corticosteroids for septic shock ICU
- Consider antivirals for flu
- Patient information at discharge
- Smoking cessation advice

Thank you

Statins in Infection/Sepsis

Systematic Review Cohort Studies, n=337,648 (27 studies)

Statins in Infection/Sepsis

Systematic Review RCTs, n=867 (5 studies)

Wan, Crit Care 2014

Simvastatin in Ventilator Acquired Pneumonia

French ICUs. 2010 – 2013. n=251 (planned n=1002) Simvastatin 60 mg daily, onwards

Statin use in last month: 7% vs 11%

Papazain, JAMA 2013

Outpatient management of CAP : a secondary care perspective

Early discharge after admission: role of specialists

Nottingham. Short stay unit – nurse triage.

	Resp Med	Non-specialist	
САР	n=123	n=174	
LOS d (median)	1.7	3.0	(p<0.01)
Discharged <24h	43%	32%	
Readmission 30d	4%	4%	
Cellulitis	n=229	n=428	
LOS d (median)	2.8	2.6	
Discharged <24h	25%	31%	
Readmission 30d	3.5%	3.5%	

Bewick, Thorax 2009

CXR 2 – 3 months post-pneumonia

	Cohort	Abnormality	Cancer
US (n=618)	Outpatients	3.7%	1.5%
Canada (n=3398)	Hospital 50%		1.1%
NZ (n=302)	Hospital		2%
US (n=40,744)	Hosp, >65yr		2.4%*

*9.2% had cancer in 5 yr period, median time 297 days.

Factors associated with cancer: chronic pulmonary disease, any prior malignancy, smoking

NICE Pneumonia Guideline Dec 2014

 Use clinical judgment in conjunction with the CURB65 score to guide the management of CAP, as follows:

Consider home-based care for pts with a CURB65 score of 0 or 1.

• Offer a 5-day course of a single antibiotic to patients with low-severity CAP. Consider amoxicillin in preference to a macrolide or a tetracycline.

NICE National Institute for Health and Care Excellence

CURB65 score

Score 1 point for each feature present: Confusion Urea > 7 mmol/l Respiratoy rate \ge 30/min Blood pressure, SBP < 90 or DBP \le 60 mmHg Age \ge 65 years

 Score
 0 - 1
 2
 3 - 5

 30-day risk of mortality
 <3%</td>
 3-15%
 >15%

(SBP = systolic blood pressure. DBP = diastolic blood pressure)

Lim, Thorax 2003

Low-severity CAP – 40%

British Thoracic Society national CAP audit (>6,000 patients)

Outpatient treatment from ED

Barcelona (Spain)17%Utah (US)42%Edmonton (Canada)56%Edinburgh (UK)~ 10°

~ 10% (25% of low-severity CAP)

Cilloniz ERJ 2012, Jones BMC Pul Med 2014, Eurich AJRCCM 2015, Choudhury ERJ 2011

Reasons for hospitalisation of low-risk patients – 12 US EDs

Νο	(%) low-risk patients (n=249)
Unstable Comorbid illness	178 (71%)
Abnormal symptoms/signs/tests	73 (29%)
Pneumonia more severe than PS	I 30 (12%)
Primary care requested hospitali	sation 40 (19%)
Patient/family request	24 (10%)
Psychosocial issues	16 (6%)
Problems with outpatient therap Required hospital services	y 28 (11%) 12 (5%)

Patients with CAP discharged from ED

Barcelona. Single site. (ED physicians with interest in RTIs)

- 3,223 adults in ED \rightarrow 568 (17.6%) treated as OP.
- 301 (53.0%) males, mean age 47.2 yrs (19% aged >65 yrs)
- Low-mortality risk (PSI I-III, 97.0%; CURB65 0- 1, 94.7%)
- Pleural effusion: n=30 (5.3%). 5 had empyema \rightarrow readmitted
- 30-day mortality: n=3 (0.5%).
- Readmitted within 30-days: n=13 (2.3%). 69% comorbidities.

CASE: Cavity in a lady

- 33-year old UK-born Asian lady.
- 4 weeks fever, cough, discoloured sputum. Antibiotics from GP had not helped.
- 2 days prior to admission haemoptysis.
- No travel outside the UK since birth. No TB contacts.
- WCC 19, CRP 350

Non-infective CAVITIES

Masses

- Cancer lung, mets
- Wegener's
- Rheumatoid nodules
- Sarcoid

Consolidation

- Infarction
- COP
- Lymphoma
- ABPA

Non-infective CAVITIES

Masses

- Cancer lung, mets
- Wegener's
- Rheumatoid nodules
- Sarcoid

Consolidation

- Infarction
- COP
- Lymphoma
- ABPA

Cervical Colon Head & neck

CT in suspected CAP

Cohort study, n=319. Hospitalised adults (ESCAPED study) CT within 4h admission

	Physician CAP Probability Level after Chest CT Scan					
	Definite	Probable	Possible	Excluded		
Physician CAP probability level before chest CT scan						
Definite	107	15	10	11		
Probable	41	16	13	48		
Possible	12	4	7	31		
Excluded	2	0	0	2		
Total	162 (50.8%)	35 (10.9%)	30 (9.4%)	92 (28.8%)		

CT in suspected CAP

Cohort study, n=319. Hospitalised adults (ESCAPED study) CT within 4h admission

	Total	Changes in Classifications		
		Number	Modification Rates (95% CI)	
Physician CAP probability level before chest CT scan				
Definite	143 (44.8%)	36	25.2% (18.1-32.3)	
Probable	118 (36.9%)	102	86.4% (80.3-92.6)	
Possible	54 (16.9%)	47	87.0% (78.1–96)	
Excluded	4 (1.25%)	2	50.0% (1.0-99.0)	
lotal	319	187	58.6% (53.2-64.0)	

	Changes in Classifications				
Total	Number	Modification Rates (95% CI)			
143 (44.8%)	36	25.2% (18.1-32.3)			
118 (36.9%)	102	86.4% (80.3-92.6)			
54 (16.9%)	47	87.0% (78.1–96)			
4 (1.25%)	2	50.0% (1.0-99.0)			
319	187	58.6% (53.2-64.0)			

CT-only pneumonia: pathogens

US multi-centre EPIC cohort (n=2251). Physician directed CT scans (33%)

	CT-only pneumonia n=66	Pneumonia on CXR n=2185
Any virus	20 (30.3)	570 (26.1)
Influenza	4 (6.1)	126 (5.8)
Parainfluenza virus	1 (1.5)	66 (3.0)
Coronavirus	0 (0)	53 (2.4)
Human metapneumovirus	4 (6.1)	84 (3.8)
Respiratory syncytial virus	0 (0)	68 (3.1)
Human rhinovirus	11 (16.7)	182 (8.3)
Adenovirus	1 (1.5)	31 (1.4)

29 (13.5)