The impact of AI on the practice of medicine: disentangling fact from fiction

20 March 2019

Introduction

Jeremy Reffin

www.taglaboratory.org

A quick summary of this talk ...

- Artificial intelligence: a machine performs a task typically understood to require human intelligence to undertake
- Underlying technology: mixture of symbolic and stochastic machine-learning techniques, of which 'Deep Learning' is the most well-known
- Many opportunities for AI in medicine: triage/screening, diagnostics (especially image analysis), healthcare in the community, clinical decisionsupport for therapy
- Constraints will impact rate of adoption: data issues (availability, quality, standards, control), other demands on resources, regulatory concerns, market inertia, and limitations in the technology itself

Agenda

- What is Artificial Intelligence?
- How AI can be applied to medicine
- Issues and constraints

Competing ideas in AI

- Current AI research is still working through the implications of formative ideas established by the 1980s
- Two paradigms have defined the path:
 - Symbolic processing paradigm
 - Stochastic paradigm (aka statistical, learning from data)
- Ideas have been slow to achieve due to limits in: processing power, memory and data. These constraints have eased over the past decade
- For some areas, AI capabilities have reached a 'tipping point' where they have become practically useful
- Current limits of capability are far below those of popular imagination though

Symbolic paradigm: Intelligence through Reasoning

- Computers can demonstrate sophisticated "intelligent" behaviour through the application of logical reasoning rules to symbols
- These symbols represent 'things' in the real world, and the results of the rule applications can be meaningfully translated back into the real world

Stochastic paradigm: Intelligence through contrast and context

 Computers can demonstrate sophisticated "intelligent" behaviour by sensing statistical regularities in data, and inferring properties in new data based on the presence of such regularities

Stochastic paradigm: Intelligence through contrast and context

The old man was thin and gaunt with deep wrinkles in the back of his neck. The brown blotches of the benevolent skin cancer the sun brings from its reflection on the tropic sea were on his cheeks. The blotches ran well down the sides of his face and his hands had the deep-creased scars from handling heavy fish on the cords. But none of these scars were fresh. They were as old as erosions in a fishless desert.

Stochastic paradigm: Intelligence through contrast and context

Stochastic paradigm: Unsupervised vs Supervised Learning

The old man was thin and gaunt with deep wrinkles in the back of his neck. The brown blotches of the benevolent skin cancer the sun brings from its reflection on the tropic sea were on his cheeks. The blotches ran well down the sides of his face and his hands had the deep-creased scars from handling heavy fish on the cords. But none of these scars were fresh. They were as old as erosions in a fishless desert.

Stochastic paradigm: Unsupervised vs Supervised Learning

Case courtesy of Prof Frank Gaillard, Radiopaedia.org

Case courtesy of Dr Alborz Jahangiri, Radiopaedia.org

Current AI systems are symbolic programs with stochastic cores

Current AI systems are symbolic programs with stochastic cores

2[]

Agenda

- What is Artificial Intelligence?
- How AI can be applied to medicine
- Issues and constraints

How AI can be applied to medicine: AI is the rivet of the 21st century

How AI can be applied to medicine

Diagnosis / Screening

Health in Community

Therapeutics & Decision Support

How AI can be applied to medicine: Diagnosis / Screening

UNIVERSITY OF SUSSEX

Diagnosis / Screening

- Radiology image analysis
- Pathology image analysis
- Evaluation of textual data
- Analysis of genomics data
- Integration of multiple sources

How AI can be applied to medicine: Diagnosis / Screening

OF SUSSEX

Diagnosis / Screening

- Radiology image analysis
- Pathology image analysis
- Evaluation of textual data
- Analysis of genomics data
- Integration of multiple sources

Diagnosis / Screening

- Skin cancer lesion detection
- Diabetic eye disease from photos
- AMD from OCT images
- Breast cancer from mamograms
- Colon cancer from CT scans
- Pulmonary nodules from X-rays
- X-ray analysis (emphysema, edema, effusion, mass, hernia, nodule, fibrosis)
- Categorise liver lesions from CT scans
- Tissue histopathology image classifier
- Heart failure diagnosis from EHRs
- Automatic monitoring alerts in EHRs
- OsteoDetect: Wrist fractures from X-ray
- Arterys: lesions in CT & MRI scan
- IDx-DR: diabetic retinopathy photos

How AI can be applied to medicine : Health in Community

UNIVERSITY OF SUSSEX

Health in Community

- Promotion of healthy lifestyle
- Monitor for independent living
- Disease management
- Mental health support

How AI can be applied to medicine : Health in Community

UNIVERSITY OF SUSSEX

Health in Community

- Promotion of healthy lifestyle
- Monitor for independent living
- Disease management
- Mental health support

Health in Community

- Fitness and health tracking
- Medical adherence assistance
- Chronic disease monitoring
- Continuous glucose monitoring
- Remote consultation
- Al-backed CBT for depression
- Al-backed assisted living monitoring

How AI can be applied to medicine : Therapeutics & Decision Support

UNIVERSITY OF SUSSEX

Therapeutics & Decision Support

- Predicting outcomes
- Precision therapy
- Robotic surgery
- Treatment advice

How AI can be applied to medicine : Therapeutics & Decision Support

UNIVERSITY OF SUSSEX

Therapeutics & Decision Support

- Predicting outcomes
- Precision therapy
- Robotic surgery
- Treatment advice

Therapeutics & Decision Support

- Cardiovascular risk calculation
- Predicting cancer outcomes from histology and genomics
- Autonomous robotic soft tissue surgery
- Prediction of AAA surgery outcomes
- Watson: cancer trial matching
- Watson: Cancer treatment advice

Agenda

- What is Artificial Intelligence?
- How AI can be applied to medicine
- Issues and constraints

Issues and constraints

- Data issues
 - availability, quality, control
- Other demands on resources
- Regulatory requirements
- Market inertia
- Limitations of the technology

Issues and constraints: where AI will make progress first

- Data issues
 - availability, quality, control
- Other demands on resources
- Regulatory requirements
- Market inertia
- Limitations of the technology

- Data abundant and well controlled
- Technology works well
- Confers large benefit
- Overwhelmed with increasing volumes
- Poorly served area
- Required for therapeutic advance
- Consumer led
- Private pay
- UNIVERSITY OF SUSSEX

Over-estimating Potential: Rodney Brooks' 6 Rational Explanations

Imagining magic

Performance vs Competence

Suitcase words

Exponentials

Hollywood Futures

Deployment Rate

Thank you

Jeremy Reffin

www.taglaboratory.org

11C