Stephen Pettit, Consultant Cardiologist

e-mail stephen.pettit@nhs.net

twitter @drstephenpettit

Declaration of Interests

- Support for educational activities from Abbott (formally St Jude), Boston Scientific, Medtronic, Microport (formally Sorin), PharmaCosmos, Novartis and Servier
- Consultancy advice and speakers fees from Abbott, Novartis, Servier, Vifor,. PharmaCosmos and 3R
- Member of British Society of Heart Failure board
- Member of NHS Blood and Transplant Cardiothoracic Audit Group
- Member of iMACS Research Committee

Outline of talk

- Cardiogenic shock is dangerous with real-world mortality of 45-50%
 - Mortality is highest in those with worst haemodynamic status
 - Patients may be categorised using INTERMACS profiles
- Inotropes and vasoactive drugs should be used carefully
 - Use minimum dose of the most appropriate agent for the shortest length of time
 - PA catheter may help with choice of agent and determine if you're winning or losing
- Mechanical circulatory support may be used as bridge to heart transplantation
 - Options depend on many factors including LV/RV function, INTERMACS profile
 - Latest generation of implantable LVAD represent a major step forwards
- Phone for help if you have a patient in cardiogenic shock on your ICU and they may be a candidate for heart transplantation

Definition of cardiogenic shock

Clinical criteria	Hypotension (systolic BP <90 mmHg for 30 minutes or need for support to maintain systolic BP of >90 mmHg)
	AND
	Heart rate of >60 bpm
	AND
	End-organ hypo-perfusion: cool extremities, urine output <0.5 ml/kg/hr, serum lactate >2
Haemodynamic criteria	Cardiac index of <1.8 L/min/m ²
	AND
	Pulmonary-capillary wedge pressure of >20 mmHg

Cardiogenic shock leads to a spiral to death if untreated

ICU mortality for cardiogenic shock not changed over last 15 years

Puymirat E et al. Eur J Heart Fail 2017;19:192-200

Assessment of patient with cardiogenic shock on ICU

Past medical history Height and weight Smoking status Alcohol and drug misuse Social circumstances Treatment eligibility

BACKGROUND

Next of kin

Questions to ask with patients with cardiogenic shock

- Do they really have cardiogenic shock?
 - Need to know cardiac output and intra-cardiac filling pressures
- What is wrong with the heart?
 - ECG, CXR and echocardiogram, cardiac Troponin-I
- Why has the patient developed cardiogenic shock now?
 - New onset heart failure, arrhythmias, infection, pulmonary embolism?
- How sick is the patient?
 - Lactate >2 and/or MVO2 <50% are bad
 - End-organ dysfunction?
 - Amount of cardiovascular support required

INTERMACS profiles

Principles of management in cardiogenic shock

- Identify and treat any treatable pathology
 - Cardiac or non-cardiac
- Try to lower intra-cardiac filling pressures
 - RA pressure: diuretics, CVVH
 - LA pressure: systemic vasodilatation if possible, IABP counter-pulsation
- Careful use of inotropic support may be required
 - Watch cardiovascular status and end-organ function closely
- Start thinking about options in event of deterioration

Inotropic and vasoactive drugs

Drug	Mechanism	Effect on Mortality	Key Trials (Ref. #)
Digoxin	Na-K pump inhibitor, raises SR calcium	Neutral, increased mortality if long-term therapy discontinued	DIG (15,20)
Dopamine	Dose-dependent D1, α 1-, and β 1-adrendergic receptor agonist	Increased	(48)
Norepinephrine	β1- and α1-adrenergic receptor agonist	Increased	(48)
Dobutamine	β 1- and β 2-adrenergic receptor agonist	Increased	FIRST (47)
Milrinone	PDE inhibitor, raises SR calcium	Increased	OPTIME-CHF (5)
Levosimendan	Myofilament calcium sensitizer, PDE-3 inhibitor	Neutral	REVIVE-II (61), SURVIVE (7)
Omecamtiv mecarbil	Potentiates the effects of myosin on actin to prolong systole	Unknown	ATOMIC AHF (underway), (66,69)
Istaroxime	Na-K pump inhibitor, PDE inhibitor	Unknown	HORIZON-HF (75)
SERCA2a gene therapy	Restoration of SERCA2a to improve calcium release and reuptake from the SR	Unknown	CUPID (70)

Francis GS et al. J Am Coll Cardiol 2014;63:2069–2078.

No 'best' inotropic or vasodilator strategy in cardiogenic shock

Trusted evidence.
Informed decisions.
Better health.

Apart from low quality of evidence <u>data</u> suggesting a short-term <u>mortality</u> benefit of levosimendan compared with dobutamine, at present there are no robust and convincing <u>data</u> to support a distinct inotropic or vasodilator drug-based <u>therapy</u> as a superior solution to reduce <u>mortality</u> in haemodynamically unstable people with cardiogenic shock or LCOS.

Schumann J et al. Cochrane Database of Systematic Reviews 2018, doi: 10.1002/14651858.CD009669.pub3

PA catheters help you decide if you're winning or losing

Fincke R et al. J Am Coll Cardiol 2004;44:340-8

Patient 1
MAP 80 mmHg and CO 5 L/min
CPO 0.89
Estimated mortality around 20%

Patient 2
MAP 60 mmHg and CO 3 L/min
CPO 0.39
Estimated mortality around 60%

Think about MCS in sick/deteriorating patients

Purpose of MCS

- Unload injured ventricles
- Improve end-organ perfusion
- Reduce levels of inotropes and vasopressors
- Allow cytokines to be metabolized and ATP stores to be replenished
- Allow myocardium to declare potential for recovery

Intra-aortic balloon counterpulsation is physiologically attractive

IABP did not improve survival in IABP shock trial

Thiele H et al. New Engl J Med 2012;**367**:1287-1296

But IABP superior to inotropes in many 'surrogate' measures

Secondary endpoint	IABP	Inotrope	p value
△ HR 48h	-14 bpm	-3 bpm	0.15
Δ MAP 48h	+16 mmHg	+1 mmHg	0.002
△ CVP 48h	-9 mmHg	-6 mmHg	0.64
Δ Mean PA 48h	-9 mmHg	-5 mmHg	0.03
Δ Mean PCWP 48h	-10 mmHg	-2 mmHg	0.002
Δ CPO 48h	+0.27	+0.09	0.004
△ Fluid balance 48h	-3.066 ml	-1.198ml	0.006
Δ NTproBNP 48h	-59.3%	-16%	<0.001

den Uil C et al. EuroIntervention 2019;15:586-593

Peripheral veno-arterial ECMO

Who should get peripheral veno-arterial ECMO?

May be appropriate

Cardiogenic shock

- Severe (INTERMACS profile 1/2, SCAI category D/E)
- Worsening despite conventional treatment
- No immediate option for durable MCS

Failure to wean from cardiopulmonary bypass

- Routine cardiac surgery
- Heart or lung transplantation
- Pulmonary thromboendartectomy

Cardiac arrest (ECMO-assisted CPR)

Likely to be inappropriate

Unrecoverable heart function in non-transplant candidate

- Active malignancy
- Neurological or psychiatric disease
- Severe chronic organ dysfunction (lungs, kidneys, liver)

Problem that makes VA ECMO ineffective or dangerous

- Moderate to severe aortic regurgitation
- Peripheral vascular disease
- Uncontrolled bleeding

Unwitnessed cardiac arrest or prolonged CPR

SAVE score predicts survival with ECMO but not treatment benefit

Schmidt M et al. Eur Heart J 2015;**36**:2246-56

Adverse events during VA ECMO are common

Adapted from Cheng R et al. Ann Thorac Surg 2014;97:610-6.

Moving on from VA ECMO

Median survival after heart transplantation is 12.5 years

Khush K et al. J Heart Lung Transplant 2019; 38:1056-66

Most have good quality of life after heart transplantation

Karnofsky score	Description	
100	Normal, no evidence of disease	
90	Able to perform normal activities with only mild symptoms	
80	Normal activity with effort, some symptoms	
70	Able to care for self but unable to do normal activities	
60	Requires occasional assistance; cares for most needs	
50	Requires considerable assistance	
40	Disabled; requires special assistance	
30	Severely disabled	
20	Very sick; requires active supportive treatment	
10	Moribund	

Adapted from ISHLT International Thoracic Organ Transplant Registry. Available at www.ishlt.org/registries/ttx-registry, accessed 29th April 2019

Demand for heart transplantation in the UK is rising

Supply of donor hearts has plateaued in last five years

Long waiting times, particularly for blood group O patients

Blood group	Number of patients registered	Wait <u>Median</u>	ing time (days) 95% <u>Confidence interval</u>
Non-urgent at initia	l registration		
0	178	861	714 - 1008
A	171	401	236 - 566
В	56	279	101 - 457
AB	13	276	0 - 1067
UK	418	559	407 - 711
Urgent at initial reg	istration		
0	112	49	41 - 57
Α	137	16	13 - 19
В	40	41	18 - 64
AB	19	20	8 - 32
UK	308	30	24 - 36

Many deteriorate, de-listed or die during wait for heart transplant

Implantable LVAD can be used as a bridge to heart transplantation

HeartMate 3 is latest implantable LVAD

- Continuous flow, magnetically levitated pump
- Wide blood flow passages to reduce shear stress
- Frictionless; no mechanical or hydrodynamic bearings
- Intrinsic pulse; designed to reduce stasis and reduce risk of thrombosis

Mehra MR et al. New Engl J Med 2018;378:1386-1395

HeartMate 3 delivered excellent outcomes in MOMENTUM3

Largest LVAD trial ever conducted

Best outcomes recorded with a continuous flow LVAD at 2 years

84%

4%

2%

Survival

Disabling Stroke Pump Thrombosis

Mehra MR et al. New Engl J Med 2019;**380**:1618–1627

Sustained improvement in NYHA class, 6MWD and QOL

Mehra MR et al. New Engl J Med 2018;378:1386–1395.

Excellent event-free survival with HeartMate 3 in UK

Data courtesy of NHS Blood and Transplant

Take home messages

- Cardiogenic shock is dangerous with real-world mortality of 45-50%
 - Mortality is highest in those with worst haemodynamic status
 - Patients may be categorised using INTERMACS profiles
- Inotropes and vasoactive drugs should be used carefully
 - Use minimum dose of the most appropriate agent for the shortest length of time
 - PA catheter may help with choice of agent and determine if you're winning or losing
- Mechanical circulatory support may be used as bridge to heart transplantation
 - Options depend on many factors including LV/RV function, INTERMACS profile
 - Latest generation of implantable LVAD represent a major step forwards
- Phone for help if you have a patient in cardiogenic shock on your ICU and they may be a candidate for heart transplantation

