Challenge 1: Diagnosis

Chest pain >20 minutes → ECG
Challenge 1: Diagnosis

Chest pain >20 minutes

ECG

Treat as STEMI
STEMI - management

- Direct paramedic transfer to PPCI centre
- DGH attenders transferred to PPCI centre
- Exclusions:
 - ‘Overriding comorbidity’
 - Terminal cancer
 - Severe dementia
 - Ventilated patients
 - LBBB/paced rhythm

- NB: exclusion from PPCI protocol does not preclude discussion with PPCI centre
DIRECT TRANSFER PROTOCOL TO UHW FOR PRIMARY PCI

CARDIAC CHEST PAIN
(for more than 20 minutes and persisting)1,2

12 lead ECG shows ST elevation on two or more contiguous leads – STEMI confirmed (performed within 10 min)

12 lead ECG does not show ST elevation, STEMI not confirmed or strongly suspected

Overriding co-morbidity (eg severe dementia, terminal Ca, end stage organ disease)

YES → STANDARD LOCAL ACS TREATMENT

NO → DO NOT ADMINISTER THROMBOLYSIS

WHILE WAITING FOR AMBULANCE PLEASE ENSURE:
- IV access in left arm
- 300mg aspirin
- Prasugrel 60mg to all (irrespective of age/weight and even if clopidogrel preload already)
- Analgesia + anti-emetic
- If delay call WAST control manager to ascertain which call category patient is in and source of delay

PRE-ALERT UHW
CCU 02920744343

THEN CALL 999 FOR IMMEDIATE TRANSFER TO UHW
- Ask for emergency (blue light) transfer to Cath Lab
- State reason as “confirmed Heart Attack with ST elevation on ECG”;
- Answer “yes” when asked “does this condition present an immediate threat to the patient’s life”
- If nearest available blue light ambulance is an Urgent Care Service Vehicle (no paramedic) consider providing nurse/medical escort rather than waiting for paramedic
- Confirm ETA and update UHW

NOTES:
1) Post-arrest STEMI patients who are not ventilated should be referred immediately. Post-arrest STEMI patients who are ventilated should be discussed with UHW on-call cardiology SpR or consultant prior to transfer.

2) The identification of a STEMI and requirement for transfer must as a minimum involve the senior resident on call A+E Doctor and/or the RMO. For borderline cases or suspected myocardial infarction and LBBB/paced rhythm the patient needs to be discussed first with the on call Physician/Cardiologist. If the local consultant is unavailable contact UHW cardiology SpR (sleep 5770) prior to referral/acceptance. The direct CCU number is an activation line not an advice line.
DIRECT TRANSFER PROTOCOL TO UHW FOR PRIMARY PCI

CARDIAC CHEST PAIN
(for more than 20 minutes and persisting)\(^1,2\)

12 lead ECG shows ST elevation on two or more contiguous leads – STEMI confirmed (performed within 10 min)

Overriding co-morbidity (eg severe dementia, terminal Ca, end stage organ disease)

YES

STANDARD LOCAL ACS TREATMENT

NO

DO NOT ADMINISTER THROMBOLYSIS

WHILE WAITING FOR AMBULANCE PLEASE ENSURE:

- IV access in left arm
- 300mg aspirin
- Prasugrel 60mg to all (irrespective of age/weight and even if clopidogrel preload already)
- If delay call WAST control manager to ascertain which call category patient is in and source of delay

PRE- ALERT UHW CCU 02920744343

THEN CALL 999 FOR IMMEDIATE TRANSFER TO UHW

Ask for emergency (blue light) transfer to Cath Lab
State reason as “confirmed Heart Attack with ST elevation on ECG”:
Answer “yes” when asked “does this condition present an immediate threat to the patient’s life”
If nearest available blue light ambulance is an Urgent Care Service Vehicle (no paramedic) consider providing nurse/medical escort rather than waiting for paramedic.
Confirm ETA and update UHW then

NOTES:
1) Post-arrest STEMI patients who are not ventilated should be referred immediately. Post-arrest STEMI patients who are ventilated should be discussed with UHW on-call cardiology SpR or consultant prior to transfer.

2) The identification of a STEMI and requirement for transfer must as a minimum involve the senior resident on call A+E Doctor and/or the RMO. For borderline cases or suspected myocardial infarction and LBBB/paced rhythm the patient needs to be discussed first with the on call Physician/Cardiologist. If the local consultant is unavailable contact UHW cardiology SpR (sleep 5770) prior to referral/acceptance. The direct CCU number is an activation line not an advice line.
PPCI access challenges

- Geography
- Public education - dial 999 not attend A&E
- Ambulance availability for PPCI transfer from DGH
Challenge 1: Diagnosis

Chest pain >20 minutes → ECG → Treat as STEMI

ECG

History
Examination
Biomarkers
Repeat ECG
Clinical presentation

Typical:
- Prolonged chest pain (> 20 mins)
- New onset severe CCS III angina
- Destabilisation of stable angina to CCS III

Atypical:
- Epigastric pain, recent onset indigestion
- Pleuritic chest pain
- Recent onset dyspnoea
- Pain reproduced on palpation
- More common in women, DM, elderly, CKD, dementia
Examination in ACS: what are you looking for?

- Often normal
- Aim to exclude non-cardiac / non-ischaemic causes of chest pain (remember acute aortic syndromes)
- Spot potential haemodynamic instability
- Assess for LV dysfunction
- Stratify risk for appropriate management
Examination in ACS: what are you looking for?

- Often normal
- Aim to exclude non-cardiac / non-ischaemic causes of chest pain (remember acute aortic syndromes)
- Spot potential haemodynamic instability
- Assess for LV dysfunction
- Stratify risk for appropriate management
Risk stratification – high risk patients

- ↑ age
- Male
- Previous CAD
- DM
- ↑ BP
- LVF/CCF
- Recurrent symptoms despite treatment
- ST segment depression
- Dynamic ST changes
- Elevated troponin
- Haemodynamic instability
- Major arrhythmias
Biomarkers – Highly Sensitive troponin T

- Early detection – within 1 hour of myocyte necrosis
- Advantages: second assay at 6-9 hours not 12, high negative predictive value for ACS
- Values >5 x ULN have >90% positive predictive value for ACS
- Disadvantages: confusing normal range, concept of ‘delta change’
- Still requires presence of a fully functional brain in the requestor to interpret results
HS troponin T reference ranges

<table>
<thead>
<tr>
<th></th>
<th>HS trop T initial</th>
<th>HS trop T 6 hours</th>
<th>HS trop T Δ change</th>
<th>Brain needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><14 ng/l</td>
<td><14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage unlikely</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Further consideration required</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td>20%-100%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage</td>
<td>>14 ng/l</td>
<td>>14 ng/l</td>
<td>>100%</td>
<td></td>
</tr>
</tbody>
</table>
HS troponin T reference ranges

<table>
<thead>
<tr>
<th></th>
<th>HS trop T initial</th>
<th>HS trop T 6 hours</th>
<th>HS trop T Δ change</th>
<th>Brain needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><14 ng/l</td>
<td><14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage unlikely</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Further consideration required</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td>20%-100%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage</td>
<td>>14 ng/l</td>
<td>>14 ng/l</td>
<td>>100%</td>
<td></td>
</tr>
</tbody>
</table>
HS troponin T reference ranges

<table>
<thead>
<tr>
<th></th>
<th>HS trop T initial</th>
<th>HS trop T 6 hours</th>
<th>HS trop T Δ change</th>
<th>Brain needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><14 ng/l</td>
<td><14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage unlikely</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Further consideration required</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td>20%-100%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage</td>
<td>>14 ng/l</td>
<td>>14 ng/l</td>
<td>>100%</td>
<td></td>
</tr>
</tbody>
</table>
HS troponin T reference ranges

<table>
<thead>
<tr>
<th></th>
<th>HS trop T initial</th>
<th>HS trop T 6 hours</th>
<th>HS trop T Δ change</th>
<th>Brain needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><14 ng/l</td>
<td><14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage unlikely</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td><20%</td>
<td></td>
</tr>
<tr>
<td>Further consideration required</td>
<td><14 ng/l</td>
<td>>14 ng/l</td>
<td>20%-100%</td>
<td></td>
</tr>
<tr>
<td>Myocardial damage</td>
<td>>14 ng/l</td>
<td>>14 ng/l</td>
<td>>100%</td>
<td></td>
</tr>
</tbody>
</table>
Mr L

- “We think he’s having a STEMI”
- HS trop 3150
- Fit and well 44 yr old
- NO chest pain history
- EF<15% on bedside echo
- Dx: viral myocarditis
Challenge 2: Troponinitis

- Myocarditis / myopericarditis / pericarditis
- Severe CCF
- Aortic dissection
- Exacerbation of COPD
- PE
- Cardiotoxic chemotherapy
- Severe sepsis
- Prolonged acidosis
- Ultra-endurance exertion
- HCM variants
- Hypertensive crisis
- Tachy/bradyarrhythmias
- Infiltrative e.g. Sarcoid
- Renal failure

Non-coronary myocardial injury has prognostic implications
Mrs X

- 55 yr old female, smoker, positive family hx CAD, taxi driver
- 2/7 hx central chest pain at rest
- Initial dx “ACS”
- Given aspirin, clopidogrel, fondaparinux
- Initial hs trop 35 then 2nd hs trop 21
- “troponin profile not suggestive of ACS”
- Sent home (3am), Dx – “oesophageal spasm”
- No follow up
- Meds unchanged
- No advice re: driving (taxi driver)
Mrs X

- 55 yr old female, smoker, positive family hx CAD, taxi driver
- 2/7 hx central chest pain at rest
- Initial dx “ACS”
- Given aspirin, clopidogrel, fondaparinux
- Initial hs trop 35 then 2nd hs trop 21
- “troponin profile not suggestive of ACS”
- Sent home (3am), Dx – “oesophageal spasm”
- No follow up
- Meds unchanged
- No advice re: driving (taxi driver)
ECG:

- Suggests severe proximal LAD stenosis
- T inversion extends to I and aVL indicating large ischaemic territory involved
- Ischaemic QTc prolongation (524ms)
- High probability of sudden death from future ischaemic events:
 - sudden severe pump failure
 - polymorphic VT
- Recalled and admitted
- Discharging Dr given opportunity to reflect
Pathophysiology – a reminder

©CoffeyMJ@Cardiff.ac.uk
Challenge 3: Which Anti Platelet Agents?

Size of the circles denotes sample size
Perimeter of the circles denotes type of investigated population
- Mixed clinical presentation at the time of stent implantation
- Acute coronary syndrome at presentation
- DAPT initiated in patients with prior myocardial infarction
- DAPT for primary prevention

LEGEND
2K pts 5K pts 10K pts 20K pts
Clopidogrel

- Prodrug requiring CYP3A4 mediated oxidation to active form (2-6 hours)
- Selectively and irreversibly inhibits platelet ADP P2Y12 receptors
- 85% is hydrolysed to an inactive form
- High individual variability in response due to genetic polymorphisms

Prasugrel

- Also a prodrug irreversibly inhibiting platelet ADP P2Y\textsubscript{12} receptors
- Faster onset than clopidogrel (30 mins vs. 2-6 hours to clinical effect)
- Therefore utilised in PPCI for STEMI
- Increased bleeding risk
Ticagrelor

- Reversible inhibitor of platelet ADP P2Y$_{12}$ receptors
- Faster onset than clopidogrel (30 mins vs. 2-6 hours to clinical effect)
- Faster recovery of platelet function on cessation
- May cause dyspnoea and bradyarrhythmias
- Reduced mortality without increased bleeding (PLATO)
Which DAPT at the front door?

- ALWAYS ASPIRIN

- If STEMI for PPCI use prasugrel 60mg with aspirin 300mg

- If NSTE-ACS consider ticagrelor......but clopidogrel more likely to be available

- Cardiologist may switch from clopidogrel to ticagrelor when patient reviewed

- For patients undergoing coronary intervention DAPT regime and duration should be determined by operator
Challenge 3: ACS in the elderly

- Proportion of those >80 yrs to triple by 2050 (CDC data)
- Underrepresentation in clinical trials – those that do participate may not be representative of ‘real elderly’
- Multi-morbidity common
- Frequently present atypically (dyspnoea) and late
- Challenging for stress testing
- Higher risk of complications following any form of revascularisation:
 - Bleeding
 - Hypotension
 - Bradycardia
 - Renal failure
Challenge 3: ACS in the elderly

- Elderly less likely to undergo invasive risk stratification\(^1\)
- Patients >75 years derive largest benefit in risk reduction from invasive strategy\(^2\)

- Individualised approach needed:
 - frailty
 - patient choice
 - renal function
 - bleeding risk
 - cognitive function

- Trial data pending: SENIOR trial

Challenge 4: ACS in CKD

- Many CKD patients have CAD risk factors
- Diagnosis more challenging – ECG changes plus troponin elevation are common
- Worse prognosis from ACS
- Little safety data for P2Y$_{12}$ inhibitors in CKD 5 (use clopidogrel)
- Fondaparinux contraindicated if Cr clearance <20mls/min (use enoxaparin)

- Less likely to receive evidence-based Rx$^1,^2$
- Concern re: contrast nephropathy

1: Esekowitz J *et al.* Association of renal insufficiency with outcome in HF and CAD. *JACC.* 2004; **44:** 1587-92
Mr P

- Mr RP, 71 yr old male, new chest pain at rest
- CKD 4, asthma, endocarditis 2013 (MV repair)

- Initial trop 43, 6 hour trop 53
- Cr 204 (stable)
- Troponin rise attributed to CKD

- Discharged home with ISMN and referral to RACPC
- Attended routine yearly review in my OPD 2/52 later
Challenge 4: ACS in CKD

- Serial and old ECGs useful to determine new changes
- Rise and fall pattern of HS trop suggests myocardial injury
- Requires individualised assessment of relative risk of invasive assessment
- Prehydration for all patients with eGFR<60
Summary

• History taking is still crucial to diagnosis in ACS

• Beware late presenters with a falling troponin

• Always aspirin; DAPT regime should be guided by cardiology

• One size does not fit all for high risk groups